The bivariate generalized linear failure rate distribution and its multivariate extension
نویسندگان
چکیده
The two-parameter linear failure rate distribution has been used quite successfully to analyze lifetime data. Recently, a new three-parameter distribution, known as the generalized linear failure rate distribution, has been introduced by exponentiating the linear failure rate distribution. The generalized linear failure rate distribution is a very flexible lifetime distribution, and the probability density function of the generalized linear failure rate distribution can take different shapes. Its hazard function also can be increasing, decreasing and bathtub shaped. The main aim of this paper is to introduce a bivariate generalized linear failure rate distribution, whose marginals are generalized linear failure rate distributions. It is obtained using the same approach as was adopted to obtain the Marshall–Olkin bivariate exponential distribution. Different properties of this new distribution are established. The bivariate generalized linear failure rate distribution has five parameters and the maximum likelihood estimators are obtained using the EM algorithm. A data set is analyzed for illustrative purposes. Finally, some generalizations to the multivariate case are proposed. © 2010 Elsevier B.V. All rights reserved.
منابع مشابه
Beta-Linear Failure Rate Distribution and its Applications
We introduce in this paper a new four-parameter generalized version of the linear failure rate distribution which is called Beta-linear failure rate distribution. The new distribution is quite flexible and can be used effectively in modeling survival data and reliability problems. It can have a constant, decreasing, increasing and bathtub-shaped failure rate function depending on its parameter...
متن کاملBayesian Prediction Intervals under Bivariate Truncated Generalized Cauchy Distribution
Ateya and Madhagi (2011) introduced a multivariate form of truncated generalized Cauchy distribution (TGCD), which introduced by Ateya and Al-Hussaini (2007). The multivariate version of (TGCD) is denoted by (MVTGCD). Among the features of this form are that subvectors and conditional subvectors of random vectors, distributed according to this distribution, have the same form of distribution ...
متن کاملAn Extended Generalized Lindley Distribution and Its Applications to Lifetime Data
In this paper, a four parameters extension of the generalized Lindley distribution is introduced. The new distribution includes the power Lindley, Lindley, generalized (Stacy) gamma, gamma, Weibull, Rayleigh, exponential and half-normal distribution. Several statistical properties of the distribution are explored. Then, a bivariate version of the proposed distribution is derived. Using a simula...
متن کاملMultivariate Extension of Modified Sarhan-Balakrishnan Bivariate Distribution
Recently Kundu and Gupta (2010, Modified Sarhan-Balakrishnan Singular Bivariate Distribution, Journal of Statistical Planning and Inference, 140, 526 538) introduced the modified Sarhan-Balakrishnan bivariate distribution and established its several properties. In this paper we provide a multivariate extension of the modified Sarhan-Balakrishnan bivariate distribution. It is a distribution with...
متن کاملHessian Stochastic Ordering in the Family of multivariate Generalized Hyperbolic Distributions and its Applications
In this paper, random vectors following the multivariate generalized hyperbolic (GH) distribution are compared using the hessian stochastic order. This family includes the classes of symmetric and asymmetric distributions by which different behaviors of kurtosis in skewed and heavy tail data can be captured. By considering some closed convex cones and their duals, we derive some necessary and s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 55 شماره
صفحات -
تاریخ انتشار 2011